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4 Overview

PhyML [1] is a software package which primary task that is to estimate maximum

likelihood phylogenies from alignments of nucleotide or amino acid sequences. It

provides a wide range of options that were designed to facilitate standard phyloge-

netic analyses. The main strengths of PhyML lies in the large number of substitution

models coupled to various options to search the space of phylogenetic tree topologies,

going from very fast and efficient methods to slower but generally more accurate ap-

proaches. It also implements two methods to evaluate branch supports in a sound

statistical framework (the non-parametric bootstrap and the approximate likelihood

ratio test,)

PhyML was designed to process moderate to large data sets. In theory, align-

ments with up to 4,000 sequences 2,000,000 character-long can analyzed. In practice

however, the amount of memory required to process a data set is proportional of the

product of the number of sequences by their length. Hence, a large number of se-

quences can only be processed provided that they are short. Also, PhyML can handle

long sequences provided that they are not numerous. With most standard personal

computers, the “comfort zone” for PhyML generally lies around 100-200 sequences

less than 2,000 character long. For larger data sets, we recommend using other soft-

ware’s such as RAxML [2] or GARLI [3] or Treefinder (http://www.treefinder.de).

5 Installing PhyML

5.1 Sources and compilation

The sources of the program are available free of charge by sending an e-mail to

Stéphane Guindon at guindon@lirmm.fr or s.guindon@auckland.ac.nz.

The compilation on UNIX-like systems is fairly standard. It is described in the

‘INSTALL’ file that comes with the sources. In a command-line window, go to the

directory that contains the sources and type:

./configure;
make clean;
make;

By default, PhyML will be compiled with optimization flags turned on. It is

possible to generate a version of PhyML that can run through a debugging tool

(such as ddd) or a profiling tool (such as gprof) using the following instructions:

./configure --enable-debug;
make clean;
make;
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5.2 Installing PhyML on UNIX-like systems (including Mac

OS)

Copy PhyML binary file in the directory you like. For the operating system to be able

to locate the program, this directory must be specified in the global variable PATH.

In order to achieve this, you will have to add export PATH="/your path/:$PATH"

to the .bashrc or the .bash profile located in your home directory (your path is

the path to the directory that contains PhyML binary).

5.3 Installing PhyML on Microsoft Windows

Copy the files phyml.exe and phyml.bat in the same directory. To launch PhyML,

click on the icon corresponding to phyml.bat. Clicking on the icon for phyml.exe

works too but the dimensions of the window will not fit PhyML interface.

5.4 Installing the parallel version of PhyML

Bootstrap analysis can run on multiple processors. Each processor analyses one

bootstraped dataset. Therefore, the computing time needed to perform R bootstrap

replicates is divided by the number of processors available.
This feature of PhyML relies on the MPI (Message Passing Interface) library. To

use it, your computer must have MPI installed on it. In case MPI is not installed,
you can dowload it from http://www.mcs.anl.gov/research/projects/mpich2/. Once
MPI is installed, it is necessary to launch the MPI daemon. This can be done by
entering the following instruction: mpd &. Note however that in most cases, the MPI
daemon will already be running on your server so that you most likely do not need to
worry about this. You can then just go in the phyml/ directory (the directory that
contains the src/, examples/ and doc/ folders) and enter the commands below:

./configure --enable-mpi;
make clean;
make;

A binary file named phyml-mpi has now been created in the src/ directory and
is ready to use with MPI. A typical MPI command-line which uses 4 CPUs is given
below:

mpirun -n 4 ./phyml-mpi -i myseq -b 100

6 Program usage.

PhyML has two distinct user-interfaces. The first interface is probably the most

popular. It corresponds to a PHYLIP-like text interface that makes the choice of

the options self-explanatory (see Figure 1). The command-line interface is well-

suited for people that are familiar with PhyML options or for running PhyML in

batch mode.
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Figure 1. PHYLIP-like interface to PhyML.

6.1 PHYLIP-like interface

The default is to use the PHYLIP-like text interface (Figure 1) by simply typing

‘phyml’ in a command-line window or by clicking on the PhyML icon (see Section

5.3). After entering the name of the input sequence file, a list of sub-menus helps

the users to set up the analysis. There are currently four distinct sub-menus:

1. Input Data: specify whether the input file contains amino-acid or nucleotide

sequences. What the sequence format is (see Section 7) and how many data

sets should be analysed.

2. Substitution Model: selection of the Markov model of substitution.

3. Tree Searching: selection of the tree topology searching algorithm.

4. Branch Support: selection of the method that is used to measure branch sup-

port.

‘+’ and ‘-’ keys are used to move forward and backward in the sub-menu list. Once

the model parameters have been defined, typing ‘Y’ (or ‘y’) launches the calculations.

The meaning of some options may not be obvious to users that are not familiar with

phylogenetics. In such situation, we strongly recommend to use the default options.

As long as the format of the input sequence file is correctly specified (sub-menu

Input data), the safest option for non-expert users is to use the default settings.
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The different options provided within each sub-menu are described in what fol-

lows.

6.1.1 Input Data sub-menu

[D] ............................... Data type (DNA/AA)

Type of data in the input file. It can be either DNA or amino-acid sequences in

PHYLIP format (see Section 7). Type D to change settings.

[I] ...... Input sequences interleaved (or sequential)

PHYLIP format comes in two flavours: interleaved or sequential (see Section 7).

Type I to selected among the two formats.

[M] ....................... Analyze multiple data sets

If the input sequence file contains more than one data sets, PhyML can analyse each

of them in a single run of the program. Type M to change settings.

[R] ............................................ Run ID

This option allows you to append a string that identifies the current PhyML run.

Say for instance that you want to analyse the same data set with two models. You

can then ‘tag’ the first PhyML run with the name of the first model while the second

run is tagged with the name of the second model.

6.1.2 Substitution model sub-menu

[M] ................. Model of nucleotide substitution

[M] ................ Model of amino-acids substitution

PhyML implements a wide range of substitution models: JC69 [4], K80 [5], F81 [6],

F84 [7], HKY85 [8], TN93 [9] GTR [10,11] and custom for nucleotides; LG [12], WAG

[13], Dayhoff [14], JTT [15], Blosum62 [16], mtREV [17], rtREV [18], cpREV [19],

DCMut [20], VT [21] and mtMAM [22] anf custom for amino acids. Cycle through

the list of nucleotide or amino-acids substitution models by typing M. Both nucleotide

and amino-acid lists include a ‘custom’ model. The custom option provides the most
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flexible way to specify the nucleotide substitution model. The model is defined by

a string made of six digits. The default string is ‘000000’, which means that the six

relative rates of nucleotide changes: A ↔ C, A ↔ G, A ↔ T , C ↔ G, C ↔ T and

G ↔ T , are equal. The string ‘010010’ indicates that the rates A ↔ G and C ↔ T

are equal and distinct from A ↔ C = A ↔ T = C ↔ G = G ↔ T . This model

corresponds to HKY85 (default) or K80 if the nucleotide frequencies are all set to

0.25. ‘010020’ and ‘012345’ correspond to TN93 and GTR models respectively.

The digit string therefore defines groups of relative substitution rates. The initial

rate within each group is set to 1.0, which corresponds to F81 (JC69 if the base

frequencies are equal). Users also have the opportunity to define their own initial

rate values. These rates are then optimised afterwards (option ‘O’) or fixed to their

initial values. The custom option can be used to implement all substitution models

that are special cases of GTR.

The custom model also exists for protein sequences. It is useful when one wants

to use an amino-acid substitution model that is not hard-coded in PhyML. The

symmetric part of the rate matrix, as well as the equilibrium amino-acid frequencies,

are given in a file which name is given as input of the program. The format of this

file is described in the section 7.4.

[F] ................. Optimise equilibrium frequencies

[E] ......... Equilibrium frequencies (empirical/user)

[F] . Amino acid frequencies (empirical/model defined)

For nucleotide sequences, optimising nucleotide frequencies means that the values of

these parameters are estimated in the maximum likelihood framework. When the

custom model option is selected, it is also possible to give the program a user-defined

nucleotide frequency distribution at equilibrium (option E). For protein sequences,

the stationary amino-acid frequencies are either those defined by the substitution

model or those estimated by counting the number of different amino-acids observed

in the data. Hence, users should be well aware that the meaning of the F option

depends on the type of the data to be processed.

[T] .................... Ts/tv ratio (fixed/estimated)

Fix or estimate the transition/transversion ratio in the maximum likelihood frame-

work. This option is only available when DNA sequences are to be analysed under
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K80, HKY85 or TN93 models. The definition given to this parameter by PhyML is

the same as PAML’s one. Therefore, the value of this parameter does not correspond

to the ratio between the expected number of transitions and the expected number of

transversions during a unit of time. This last definition is the one used in PHYLIP.

PAML’s manual gives more detail about the distinction between the two definitions.

[V] . Proportion of invariable sites (fixed/estimated)

The proportion of invariable sites, i.e., the expected frequency of sites that do not

evolve, can be fixed or estimated. The default is to fix this proportion to 0.0. By

doing so, we consider that each site in the sequence may accumulate substitutions at

some point during its evolution, even if no differences across sequences are actually

observed at that site. Users can also fix this parameter to any value in the [0.0, 1.0]

range or estimate it from the data in the maximum-likelihood framework.

[R] ....... One category of substitution rate (yes/no)

[C] ........... Number of substitution rate categories

[A] ... Gamma distribution parameter (fixed/estimated)

[G] .........‘Middle’ of each rate class (mean/median)

Rates of evolution often vary from site to site. This heterogeneity can be modelled

using a discrete gamma distribution. Type R to switch this option on or off.

The different categories of this discrete distribution correspond to different (rel-

ative) rates of evolution. The number of categories of this distribution is set to 4

by default. It is probably not wise to go below this number. Larger values are

generally preferred. However, the computational burden involved is proportional to

the number of categories (i.e., an analysis with 8 categories will generally take twice

the time of the same analysis with only 4 categories). Note that the likelihood will

not necessarily increase as the number of categories increases. Hence, the number of

categories should be kept below a “reasonable” number, say 20. The default number

of categories can be changed by typing C.

The middle of each discretized substitution rate class can be determined using

the mean or the median. PAML, MrBayes and RAxML use the mean. However,

the median is generally associated with greater likelihoods than the mean. This

conclusion is based on our analysis of several real-world data sets extracted from
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TreeBase. Despite this, the default option in PhyML is to use the mean in order to

make PhyML likelihoods comparable to those of other phylogenetic software. One

must bare in mind that likelihoods calculated with the mean approximation are not

directly comparable to the likelihoods calculated using the median approximation.

The shape of the gamma distribution determines the range of rate variation across

sites. Small values, typically in the [0.1, 1.0] range, correspond to large variability.

Larger values correspond to moderate to low heterogeneity. The gamma shape

parameter can be fixed by the user or estimated via maximum-likelihood. Type A

to select one or the other option.

6.1.3 Tree searching sub-menu

[O] ........................... Optimise tree topology

By default the tree topology is optimised in order to maximise the likelihood. How-

ever, it is also possible to avoid any topological alteration. This option is useful when

one wants to compute the likelihood of a tree given as input (see below). Type O to

select among these two options.

[S] .................. Tree topology search operations

PhyML proposes three different methods to estimate tree topologies. The default

approach is to use simultaneous NNI. This option corresponds to the original PhyML

algorithm [1]. The second approach relies on subtree pruning and regrafting (SPR).

It generally finds better tree topologies compared to NNI but is also significantly

slower. The third approach, termed BEST, simply estimates the phylogeny using

both methods and returns the best solution among the two. Type S to choose among

these three choices.

[R] ......................... Use random starting tree

[N] .................. Number of random starting trees

When the SPR or the BEST options are selected, is is possible to use random trees

rather than BioNJ or a user-defined tree, as starting tree. If this option is turned on

(type R to change), five trees, corresponding to five random starts, will be estimated.

The output tree file will contain the best tree found among those five. The number

of random starts can be modified by typing N.
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[U] ........ Starting tree (BioNJ/parsimony/user tree)

When the tree topology optimisation option is turned on, PhyML proceeds by re-

fining an input tree. By default, this input tree is estimated using BioNJ [23]. The

alternative option is to use a parsimony tree. We found this option specially useful

when analysing large data sets with NNI moves as it generally leads to greater like-

lihoods than those obtained when starting from a BioNJ trees. The user can also

to input her/his own tree. This tree should be in Newick format (see Section 7).

This option is useful when one wants to evaluate the likelihood of a given tree with

a fixed topology, using PhyML. Type U to choose among these two options.

6.1.4 Branch support sub-menu

[B] ................ Non parametric bootstrap analysis

The support of the data for each internal branch of the phylogeny can be estimated

using non-parametric bootstrap. By default, this option is switched off. Typing

B switches on the bootstrap analysis. The user is then prompted for a number

of bootstrap replicates. The largest this number the more precisely the bootstrap

support are. However, for each bootstrap replicate a phylogeny is estimated. Hence,

the time needed to analyse N bootstrap replicates corresponds to N -times the time

spent on the analysis of the original data set. N = 100 is generally considered as a

reasonable number of replicates.

[A] ................ Approximate likelihood ratio test

When the bootstrap option is switched off (see above), approximate likelihood

branch supports are estimated. This approach is considerably faster than the boot-

strap one. However, both methods intend to estimate different quantities and con-

ducting a fair comparison between both criteria is not straightforward. The estima-

tion of approximate likelihood branch support comes in two flavours: the measured

statistics is compared to a χ2 distribution or a non-parametric distribution estimated

using a RELL approximation.

6.2 Command-line interface

The alternative to the PHYLIP-like interface is the command line. Users that do

not need to modify the default parameters can launch the program with the ‘phyml

-i seq file name’ command. The list of all command line arguments and how to

use them is given in the ‘Help’ section which is displayed after entering the ‘phyml

help’ command. The options are also described in what follows.
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• -i (or --input) seq file name

seq file name is the name of the nucleotide or amino-acid sequence file in

PHYLIP format.

• -d (or --datatype) data type

data type is nt for nucleotide (default) and aa for amino-acid sequences.

• -q (or --sequential)

Changes interleaved format (default) to sequential format.

• -n (or --multiple) nb data sets

nb data sets is an integer giving the number of data sets to analyse.

• -p (or --pars)

Use a minimum parsimony starting tree. This option is taken into account

when the ’-u’ option is absent and when tree topology modifications are to be

done.

• -b (or --bootstrap) int

– int > 0: int is the number of bootstrap replicates.

– int = 0: neither approximate likelihood ratio test nor bootstrap values

are computed.

– int = -1: approximate likelihood ratio test returning aLRT statistics.

– int = -2: approximate likelihood ratio test returning Chi2-based para-

metric branch supports.

– int = -4: SH-like branch supports alone.

• -m (or --model) model name

model name : substitution model name.

– Nucleotide-based models: HKY85 (default) | JC69 | K80 | F81 | F84 |

TN93 | GTR | custom

The custom option can be used to define a new substitution model. A

string of six digits identifies the model. For instance, 000000 corresponds

to F81 (or JC69 provided the distribution of nucleotide frequencies is uni-

form). 012345 corresponds to GTR. This option can be used for encoding

any model that is a nested within GTR. See Section 6.1.2. NOTE: the

substitution parameters of the custom model will be optimised so as to
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maximise the likelihood. It is possible to specify and fix (i.e., avoid opti-

misation) the values of the substitution rates only through the PHYLIP-

like interface.

– Amino-acid based models: LG (default) WAG | JTT | MtREV | Dayhoff

| DCMut | RtREV | CpREV | VT | Blosum62 | MtMam | MtArt |

HIVw | HIVb | custom

The custom option is useful when one wants to use an amino-acid

substitution model that is not available by default in PhyML. The

symmetric part of the rate matrix, as well as the equilibrium amino-acid

frequencies, are given in a file which name is asked for by the program.

The format of this file is described in section 7.4.

• --aa rate file file name

This option is compulsory when analysing amino-acid sequences under a ‘cus-

tom’ model. file name should provide a rate matrix and equilibrium amino

acid in PAML format (see Section ).

• -f e, m, or “fA,fC,fG,fT”

Nucleotide or amino-acid frequencies.

– e : the character frequencies are determined as follows :

∗ Nucleotide sequences: (Empirical) the equilibrium base frequencies

are estimated by counting the occurence of the different bases in the

alignment.

∗ Amino-acid sequences: (Empirical) the equilibrium amino-acid fre-

quencies are estimated by counting the occurence of the different

amino-acids in the alignment.

– m : the character frequencies are determined as follows :

∗ Nucleotide sequences: (ML) the equilibrium base frequencies are es-

timated using maximum likelihood.

∗ Amino-acid sequences: (Model) the equilibrium amino-acid frequen-

cies are estimated using the frequencies defined by the substitution

model.

– “fA,fC,fG,fT” : only valid for nucleotide-based models. fA, fC, fG and

fT are floating numbers that correspond to the frequencies of A, C, G

and T respectively.

• -t (or --ts/tv) ts/tv ratio

ts/tv ratio: transition/transversion ratio. DNA sequences only. Can be
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a fixed positive value (e.g., 4.0) or type e to get the maximum likelihood

estimate.

• -v (or --pinv) prop invar

prop invar: proportion of invariable sites. Can be a fixed value in the [0,1]

range or type e to get the maximum likelihood estimate.

• -c (or --nclasses) nb subst cat

nb subst cat: number of relative substitution rate categories. Default:

nb subst cat=4. Must be a positive integer.

• -a (or --alpha) gamma

gamma: value of the gamma shape parameter. Can be a fixed positive value

or e to get the maximum likelihood estimate. The value of this parameter is

estimated in the maximum likelihood framework by default.

• --use median

The middle of each substitution rate class in the discrete gamma distribution

is taken as the median. The mean is used by default.

• --free rates

As an alternative to the discrete gamma model, it is possible to estimate the

(relative) rate in each class of the (mixture) model and the corresponding

frequencies. This model has more parameters than the discrete gamma one

but usually provides a significantly better fit to the data.

• --codpos 1,2 or 3

When analysing an alignment of coding sequences, use this option to consider

only the first, second or third coding position for the estimation.

• -s (or --search) move

Tree topology search operation option. Can be either NNI (default, fast) or

SPR (a bit slower than NNI) or BEST (best of NNI and SPR search).

• -u (or --inputtree) user tree file

user tree file: starting tree filename. The tree must be in Newick format.

• -o params

This option focuses on specific parameter optimisation.

– params=tlr: tree topology (t), branch length (l) and substitution rate

parameters (r) are optimised.

– params=tl: tree topology and branch lengths are optimised.
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– params=lr: branch lengths and substitution rate parameters are opti-

mised.

– params=l: branch lengths are optimised.

– params=r: substitution rate parameters are optimised.

– params=n: no parameter is optimised.

• --rand start

This option sets the initial tree to random. It is only valid if SPR searches are

to be performed.

• --n rand starts num

num is the number of initial random trees to be used. It is only valid if SPR

searches are to be performed.

• --r seed num

num is the seed used to initiate the random number generator. Must be an

integer.

• --print site lnl

Print the likelihood for each site in file * phyml lk.txt.

• --print trace

Print each phylogeny explored during the tree search process in file

* phyml trace.txt.

• --run id ID string

Append the string ID string at the end of each PhyML output file. This option

may be useful when running simulations involving PhyML. It can also be used

to ‘tag’ multiple analysis of the same data set with various program settings.

• --no memory check

By default, when processing a large data set, PhyML will pause and ask the

user to confirm that she/he wants to continue with the execution of the analysis

despite the large amount of memory required. The --no memory check skips

this question. It is especially useful when running PhyML in batch mode.

• --no jcolalias

By default, PhyML preprocesses each alignment by putting together (or alias-

ing) the columns that are identical. Use this option to skip this step but be

aware that the analysis might then take more time to complete.
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• --contrained lens

When an input tree with branch lengths is provided, this option will find

the branch multiplier that maximises the likelihood (i.e., the relative branch

lengths remain constant)

• --constraint file file name

file name lists the topological constraints under which the tree topology

search is conducted. This option should be used in conjunction with -u

file name. See Section 7.5 for more information.

• --quiet

Runs PhyML in quiet mode. The program will not pause if the memory re-

quired to run the analysis exceeds 256MB and will not output the log-likelihood

score to the output.

6.3 Parallel bootstrap

Bootstrapping is a highly parallelizable task. Indeed, bootstrap replicates are inde-

pendent from each other. Hence, each bootstrap sample can be analysed separately.

Modern computers often have more than one CPU. Each CPU can therefore be used

to process a bootstrap sample. Using this parallel strategy, performing R bootstrap

replicates on C CPUs ‘costs’ the same amount of computation time as processing

R × C bootstrap replicates on a single CPU. In other words, for a given number

of replicates, the computation time is divided by R compared to the non-parallel

approach.

PhyML sources must be compiled with specific options to turn on the parallel

option (see Section 5.4). Once the binary file (phyml) has been generated, running

a bootstrap analysis with, say 100 replicates on 2 CPUs, can be done by typing the

following command-line:

mpd &;

mpirun -np 2 ./phyml -i seqfile -b 100;

The first command launches the mpi daemon while the second launches the analysis.

Note that launching the daemon needs to be done only once. The output files are

similar to the ones generated using the standard, non-parallel, analysis (see Section

7). Note that running the program in batch mode, i.e.:

mpirun -np 2 ./phyml -i seqfile -b 100 &

will probably NOT work. I do not know how to run a mpi process in batch mode

yet. Suggestions welcome... Also, at the moment, the number of bootstrap replicates

must be a multiple of the number of CPUs required in the mpirun command.
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PHYLIP interleaved
5 80
seq1 CCATCTCACGGTCGGTACGATACACCKGCTTTTGGCAGGAAATGGTCAATATTACAAGGT
seq2 CCATCTCACGGTCAG---GATACACCKGCTTTTGGCGGGAAATGGTCAACATTAAAAGAT
seq3 RCATCTCCCGCTCAG---GATACCCCKGCTGTTG????????????????ATTAAAAGGT
seq4 RCATCTCATGGTCAA---GATACTCCTGCTTTTGGCGGGAAATGGTCAATCTTAAAAGGT
seq5 RCATCTCACGGTCGGTAAGATACACCTGCTTTTGGCGGGAAATGGTCAAT????????GT

ATCKGCTTTTGGCAGGAAAT
ATCKGCTTTTGGCGGGAAAT
AGCKGCTGTTG?????????
ATCTGCTTTTGGCGGGAAAT
ATCTGCTTTTGGCGGGAAAT

PHYLIP sequential
5 40
seq1 CCATCTCANNNNNNNNACGATACACCKGCTTTTGGCAGG
seq2 CCATCTCANNNNNNNNGGGATACACCKGCTTTTGGCGGG
seq3 RCATCTCCCGCTCAGTGAGATACCCCKGCTGTTGXXXXX
seq4 RCATCTCATGGTCAATG-AATACTCCTGCTTTTGXXXXX
seq5 RCATCTCACGGTCGGTAAGATACACCTGCTTTTGxxxxx

Figure 2. PHYLIP interleaved and sequential formats.

7 Inputs / outputs

PhyML reads data from standard text files, without the need for any particular file

name extension.

7.1 Sequence formats

Alignments of DNA or protein sequences must be in PHYLIP or NEXUS [24]

sequential or interleaved format (Figures 7.1 and 3). For PHYLIP formated sequence

alignments, the first line of the input file contains the number of species and the

number of characters, in free format, separated by blank characters. One slight

difference with PHYLIP format deals with sequence name lengths. While PHYLIP

format limits this length to ten characters, PhyML can read up to hundred character

long sequence names. Blanks and the symbols “(),:” are not allowed within sequence

names because the Newick tree format makes special use of these symbols. Another

slight difference with PHYLIP format is that actual sequences must be separated

from their names by at least one blank character.

A PHYLIP input sequence file may also display more than a single data set. Each

of these data sets must be in PHYLIP format and two successive alignments must be

separated by an empty line. Processing multiple data sets requires to toggle the ‘M’

option in the Input Data sub-menu or use the ‘-n’ command line option and enter the

number of data sets to analyse. The multiple data set option can be used to process

re-sampled data that were generated using a non-parametric procedure such as cross-

validation or jackknife (a bootstrap option is already included in PhyML). This

option is also useful in multiple gene studies, even if fitting the same substitution
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Nexus nucleotides
[ This is a comment ]
#NEXUS
BEGIN DATA;
DIMENSIONS NTAX=10 NCHAR=20;
FORMAT DATATYPE=DNA;
MATRIX
tax1 ?ATGATTTCCTTAGTAGCGG
tax2 CAGGATTTCCTTAGTAGCGG
tax3 ?AGGATTTCCTTAGTAGCGG
tax4 ?????????????GTAGCGG
tax5 CAGGATTTCCTTAGTAGCGG
tax6 CAGGATTTCCTTAGTAGCGG
tax7 ???GATTTCCTTAGTAGCGG
tax8 ????????????????????
tax9 ???GGATTTCTTCGTAGCGG
tax10 ???????????????AGCGG;
END;

Nexus digits
[ This is a comment ]
#NEXUS
BEGIN DATA;
DIMENSIONS NTAX=10 NCHAR=20;
FORMAT DATATYPE=STANDARD SYMBOLS="0 1 2 3";
MATRIX
tax1 ?0320333113302302122
tax2 10220333113302302122
tax3 ?0220333113302302122
tax4 ?????????????2302122
tax5 10220333113302302122
tax6 10220333113302302122
tax7 ???20333113302302122
tax8 ????????????????????
tax9 ???22033313312302122
tax10 ???????????????02122;
END;

Nexus digits
[ This is a comment ]
#NEXUS
BEGIN DATA;
DIMENSIONS NTAX=10 NCHAR=20;
FORMAT DATATYPE=STANDARD SYMBOLS="00 01 02 03";
MATRIX
tax1 ??00030200030303010103030002030002010202
tax2 0100020200030303010103030002030002010202
tax3 ??00020200030303010103030002030002010202
tax4 ??????????????????????????02030002010202
tax5 0100020200030303010103030002030002010202
tax6 0100020200030303010103030002030002010202
tax7 ??????0200030303010103030002030002010202
tax8 ????????????????????????????????????????
tax9 ??????0202000303030103030102030002010202
tax10 ??????????????????????????????0002010202;
END;

Figure 3. NEXUS formats.
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model to all data sets may not be suitable.

PhyML can also process alignments in NEXUS format. Although not all the

options provided by this format are supported by PhyML, a few specific features

are exploited. Of course, this format can handle nucleotide and protein sequence

alignments in sequential or interleaved format. It is also possible to use custom

alphabets, replacing the standard 4-state and 20-state alphabets for nucleotides and

amino-acids respectively. Examples of a 4-state custom alphabet are given in Figure

3. Each state must here correspond to one digit or more. The set of states must be

a list of consecutive digits starting from 0. For instance, the list “0, 1, 3, 4” is not a

valid alphabet. Each state in the symbol list must be separated from the next one

by a space. Hence, alphabets with up to 100 states can be easily defined by using

two-digit number, starting with 00, up to 99. Most importantly, this feature gives

the opportunity to analyse data sets made of presence/absence character states (use

the symbols=‘‘0 1’’ option for such data). Alignments made of custom-defined

states will be processed using the Jukes and Cantor model. Other options of the

program (e.g., number of rate classes, tree topology search algorithm) are freely

configurable.

7.1.1 Gaps and ambiguous characters

Gaps correspond to the ‘-’ symbol. They are systematically treated as unknown

characters “on the grounds that we don’t know what would be there if something

were there” (J. Felsenstein, PHYLIP main documentation). The likelihood at these

sites is summed over all the possible states (i.e., nucleotides or amino acids) that

could actually be observed at these particular positions. Note however that columns

of the alignment that display only gaps or unknown characters are simply discarded

because they do not carry any phylogenetic information (they are equally well ex-

plained by any model). PhyML also handles ambiguous characters such as R for A

or G (purines) and Y for C or T (pyrimidines). Tables 1 and 2 give the list of valid

characters/symbols and the corresponding nucleotides or amino acids.

7.1.2 Specifying outgroup sequences

PhyML can return rooted trees provided outgroup taxa are identified from the se-

quence file. In order to do so, sequence names that display a ‘*’ character will be

automatically considered as belonging to the outgroup.

The topology of the rooted tree is exactly the same as the unrooted version of

the same tree. In other words, PhyML first ignores the distinction between ingroup

and outgroup sequences, builds a maximum likelihood unrooted tree and then tries

to add the root. If the outgroup has more than one sequence, the position of the
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Character Nucleotide Character Nucleotide

A Adenosine Y C or T

G Guanine K G or T

C Cytosine B C or G or T

T Thymine D A or G or T

U Uracil (=T ) H A or C or T

M A or C V A or C or G

R A or G − or N or X or ? unknown

W A or T (=A or C or G or T )

S C or G

Table 1. List of valid characters in DNA sequences and the corresponding

nucleotides.

Character Amino-Acid Character Amino-Acid

A Alanine L Leucine

R Arginine K Lysine

N or B Asparagine M Methionine

D Aspartic acid F Phenylalanine

C Cysteine P Proline

Q or Z Glutamine S Serine

E Glutamic acid T Threonine

G Glycine W Tryptophan

H Histidine Y Tyrosine

I Isoleucine V Valine

L Leucine − or X or ? unknown

K Lysine (can be any amino acid)

Table 2. List of valid characters in protein sequences and the correspond-

ing amino acids.
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root might be ambiguous. In such situation, PhyML tries to identify the most

relevant position of the root by considering which edge provides the best separation

between ingroup and outgroup taxa (i.e., we are trying to make the outgroup “as

monophyletic as possible”).

7.2 Tree format

PhyML can read one or several phylogenetic trees from an input file. This option is

accessible through the Tree Searching sub menu or the ‘-u’ argument from the com-

mand line. Input trees are generally used as initial maximum likelihood estimates

to be subsequently adjusted by the tree searching algorithm. Trees can be either

rooted or unrooted and multifurcations are allowed. Taxa names must, of course,

match the corresponding sequence names.

((seq1:0.03,seq2:0.01):0.04,(seq3:0.01,(seq4:0.2,seq5:0.05):0.2):0.01);

((seq3,seq2),seq1,(seq4,seq5));

Figure 4. Input trees. The first tree (top) is rooted and has branch lengths. The

second tree (bottom) is unrooted and does not have branch lengths.

7.3 Multiple alignments and trees

Single or multiple sequence data sets may be used in combination with single or

multiple input trees. When the number of data sets is one (nD = 1) and there is

only one input tree (nT = 1), then this tree is simply used as input for the single

data set analysis. When nD = 1 and nT > 1, each input tree is used successively for

the analysis of the single alignment. PhyML then outputs the tree with the highest

likelihood. If nD > 1 and nT = 1, the same input tree is used for the analysis of

each data set. The last combination is nD > 1 and nT > 1. In this situation, the

i-th tree in the input tree file is used to analyse the i-th data set. Hence, nD and

nT must be equal here.

7.4 Custom amino-acid rate model

The custom amino-acid model of substitutions can be used to implement a model

that is not hard-coded in PhyML. This model must be time-reversible. Hence, the

matrix of substitution rates is symmetrical. The format of the rate matrix with the

associated stationary frequencies is identical to the one used in PAML. An example

is given below:

22



0.55

0.51 0.64

0.74 0.15 5.43

1.03 0.53 0.27 0.03

0.91 3.04 1.54 0.62 0.10

1.58 0.44 0.95 6.17 0.02 5.47

1.42 0.58 1.13 0.87 0.31 0.33 0.57

0.32 2.14 3.96 0.93 0.25 4.29 0.57 0.25

0.19 0.19 0.55 0.04 0.17 0.11 0.13 0.03 0.14

0.40 0.50 0.13 0.08 0.38 0.87 0.15 0.06 0.50 3.17

0.91 5.35 3.01 0.48 0.07 3.89 2.58 0.37 0.89 0.32 0.26

0.89 0.68 0.20 0.10 0.39 1.55 0.32 0.17 0.40 4.26 4.85 0.93

0.21 0.10 0.10 0.05 0.40 0.10 0.08 0.05 0.68 1.06 2.12 0.09 1.19

1.44 0.68 0.20 0.42 0.11 0.93 0.68 0.24 0.70 0.10 0.42 0.56 0.17 0.16

3.37 1.22 3.97 1.07 1.41 1.03 0.70 1.34 0.74 0.32 0.34 0.97 0.49 0.55 1.61

2.12 0.55 2.03 0.37 0.51 0.86 0.82 0.23 0.47 1.46 0.33 1.39 1.52 0.17 0.80 4.38

0.11 1.16 0.07 0.13 0.72 0.22 0.16 0.34 0.26 0.21 0.67 0.14 0.52 1.53 0.14 0.52 0.11

0.24 0.38 1.09 0.33 0.54 0.23 0.20 0.10 3.87 0.42 0.40 0.13 0.43 6.45 0.22 0.79 0.29 2.49

2.01 0.25 0.20 0.15 1.00 0.30 0.59 0.19 0.12 7.82 1.80 0.31 2.06 0.65 0.31 0.23 1.39 0.37 0.31

8.66 4.40 3.91 5.70 1.93 3.67 5.81 8.33 2.44 4.85 8.62 6.20 1.95 3.84 4.58 6.95 6.10 1.44 3.53 7.09

The entry on the i-th row and j-th column of this matrix corresponds to the

rate of substitutions between amino-acids i and j. The last line in the file gives the

stationary frequencies and must be separated from the rate matrix by one line. The

ordering of the amino-acids is alphabetical, i.e, Ala, Arg, Asn, Asp, Cys, Gln, Glu,

Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val.

7.5 Topological constraint file

PhyML can perform phylogenetic tree estimation under user-specified topological

constraints. In order to do so, one should use the --constraint file file name

command-line option where file name lists the topological constraints. Such con-

straints are straightforward to define. For instance, the following constraints:

((A,B,C),(D,E,F));

indicate that taxa A, B and C belong to the same clade. D, E and F also belong to the

same clade and the two clades hence defined should not overlap. For instance, under

these two constraints, the tree ((A,B),D,((E,F),C)) is not valid. From the example

above, you will notice that the constraints are defined using a multifurcating tree

in NEWICK format. Note that this tree does not need to display the whole list of

taxa. For instance, while the only taxa involved in specifying topological constraints

above are A, B, C, D, E & F, the actual data set could include more than these six

taxa only.

PhyML tree topology search algorithms all rely on improving a starting tree.

By default, BioNJ is the method of choice for building this tree. However, there

is no guarantee that the phylogeny estimated with PhyML does comply with the

topological constraints. While it is probably possible to implement BioNJ with

topological constraints, we have not done so yet. Instead, the same multifurcating
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Sequence file name : ‘seq’

Output file name Content

seq phyml tree.txt ML tree

seq phyml stats.txt ML model parameters

seq phyml boot trees.txt ML trees – bootstrap replicates

seq phyml boot stats.txt ML model parameters – bootstrap replicates

seq phyml rand trees.txt ML trees – multiple random starts

Table 3. Standard output files

tree that defines the topological constraints should also be used as starting tree using

the -u (--inputtree) option. Altogether, the command line should look like the

following: -u=file name --constraint file=file name.

7.6 Output files

Table 3 presents the list of files resulting from an analysis. Basically, each output

file name can be divided into three parts. The first part is the sequence file name,

the second part corresponds to the extension ‘ phyml ’ and the third part is related

to the file content. When launched with the default options, PhyML only generates

two files: the tree file and the model parameter file. The estimated maximum

likelihood tree is in standard Newick format (see Figure 4). The model parameters

file, or statistics file, displays the maximum likelihood estimates of the substitution

model parameters, the likelihood of the maximum likelihood phylogenetic model,

and other important information concerning the settings of the analysis (e.g., type

of data, name of the substitution model, starting tree, etc.). Two additional output

files are created if bootstrap supports were evaluated. These files simply contain the

maximum likelihood trees and the substitution model parameters estimated from

each bootstrap replicate. Such information can be used to estimate sampling errors

around each parameter of the phylogenetic model. When the random tree option is

turned on, the maximum likelihood trees estimated from each random starting trees

are printed in a separate tree file (see last row of Table 3).

7.7 Treatment of invariable sites with fixed branch lengths

PhyML allows users to give an input tree with fixed topology and branch lengths

and find the proportion of invariable sites that maximise the likelihood (option -o

r). These two options can be considered as conflicting since branch lengths depend
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on the proportion of invariants. Hence, changing the proportion of invariants implies

that branch lengths are changing too. More formally, let l denote the length of a

branch, i.e., the expected number of substitutions per site, and p be the proportion

of invariants. We have l = (1−p)l′, where l′ is the expected number of substitutions

per variable sites. When asked to optimize p but leave l unchanged, PhyML does

the following:

1. Calculate l′ = l/(1− p) and leave l′ unchanged throughout the optimization.

2. Find the value of p that maximises the likelihood. Let p∗ denote this value.

3. Set l∗ = (1− p∗)l′ and print out the tree with l∗ (instead of l).

PhyML therefore assumes that the users wants to fix the branch lengths measured

at variable sites only (i.e., l∗ is fixed). This is the reason why the branch lengths in

the input and output trees do differ despite the use of the the -o r option. While we

believe that this approach relies on a sound rationale, it is not perfect. In particular,

the original transformation of branch lengths (l′ = l/(1−p)) relies on a default value

for p with is set to 0.2 in practice. It is difficult to justify the use of this value rather

than another one. One suggestion proposed by Bart Hazes is to avoid fixing the

branch lengths altogether and rather estimate the value of a scaling factor applied

to each branch length in the input tree (option --contrained lens). We agree that

this solution probably matches very well most users expectation, i.e., “find the best

value of p while constraining the ratio of branch lengths to be that given in the input

tree”. Please feel free to send us your suggestions regarding this problem by posting

on forum (http://groups.google.com/group/phyml-forum).

8 Other programs in the PhyML package

PhyML is software package that provides tools to tackle problems other than esti-

mating maximum likelihood phylogenies. Installing these tools and processing data

sets is explained is the following sections.

8.1 PhyTime (Guindon, Mol. Biol. Evol. 2010)

PhyTime is a program that estimates node ages and substitution rates using a fast

Bayesian approach. It relies on a Gibbs sampler which outperforms the “standard”

Metropolis-Hastings algorithm implemented in a number of phylogenetic softwares.

The details and performance of this approach are described in the following article:

Guindon S. “Bayesian estimation of divergence times from large data sets”, Mol.

Biol. Evol., 2010, 27(8):1768:81.

25

http://groups.google.com/group/phyml-forum


8.1.1 Installing PhyTime

Compiling PhyTime is straightforward on Unix-like machines (i.e., linux and MacOS
systems). PhyTime is not readily available for Windows machines but compilation
should be easy on this system too. In the ‘phyml’ directory, where the ‘src/’ and
‘doc/’ directories stand, enter the following commands:

./configure --enable-phytime;
make clean;
make;

This set of commands generates a binary file called phytime which can be found

in the ‘src/’ directory.

8.1.2 Running PhyTime

Passing options and running PhyTime on your data set is quite similar to running

PhyML in commmand-line mode. The main differences between the two programs

are explained below:

• PhyTime takes as mandatory input a rooted phylogenetic tree. Hence, the ‘-u’

option must be used. Also, unlike PhyML, PhyTime does not modify the tree

topology. Hence, the options that go with the ‘-s’ command do not alter the

input tree topology.

• PhyTime needs an input file giving information about calibration nodes. The

command ‘--calibration=’ followed by the name of the file containing the

calibration node information is mandatory. The content of that file should

look as follows:

Calibration node file
Dugong_dugon Procavia_capensis Elephantidae | -65 -54
Equus_sp. Ceratomorpha | -58 -54
Cercopithecus_solatus Macaca_mulatta Hylobates_lar Homo_sapiens | -35 -25
Lepus_crawshayi Oryctolagus_cuniculus Ochotona_princeps | -90 -37
Marmota_monax Aplodontia_rufa | -120 -37
Dryomys_nitedula Glis_glis | -120 -28.5
@root@ | -100 -120

Every row in this file lists a set of taxa that belong to the same subtree (i.e., a

clade). This list of taxa is followed by the character ‘|’ and two real numbers

corresponding to the lower and upper bounds of the calibration interval for the

node at the root of the clade. In the example given here, the clade grouping

the three taxa “Dugong dugon”, “Procavia capensis” and “Elephantida” has

-65 as lower bound and -54 as upper bound. Node ages (or node heights) are

relative to the most recent tip node in the phylogeny, which age is set to 0.

It is also possible to define a clade using only two taxon names. PhyTime
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will then search for the most recent common ancestor of these two taxa in the

user-defined phylogeny and assign time boundaries to the corresponding node.

Note that the node corresponding to the root of the whole tree has a specific

label: ‘@root@’. It is important to specify upper and lower bounds for the

root node in order to ensure convergence of the Gibbs sampler. If the prior

interval for the root height is not specified, the upper bound will be set to the

upper bound of the oldest calibration node and the lower bound will be set

to twice this age. As a consequence, leaving the prior on root height interval

unspecified may produce inaccurate estimates of node ages, especially if there

are only few otherwise calibration nodes available.

A notable exception to this rule comes from the analysis of serial sample data,

i.e., alignments in which sequences were not sampled at the same time point.

For such data, the estimated number of substitutions accumulated between

successive time points is used to estimate the substitution rate averaged over

lineages. Because the time of collection of the sequences is generally known

without ambiguity, this extra piece of data is translated into very informative

calibration intervals for the tip nodes (i.e., calibration interval of zero width),

which in turn results in substitution rate estimates with descreased variances.

Posterior distribution of substitution rates with small variances then allows

one to get good estimates of the root age.

A typical PhyTime command-line should look like the following:

./phytime -i seqname -u treename --calibration=calibration_file -m GTR -c 8

Assuming the file ‘seqname’ contains DNA sequences in PHYLIP or NEXUS for-

mat, ‘treename’ is the rooted input tree in NEXUS format and ‘calibration file’

is a set of calibration nodes, PhyTime will estimate the posterior distribution of node

times and substitution rates under the assumption that the substitution process fol-

lows a GTR model with 8 classes of rates in the Gamma distribution of rates across

sites. The model parameter values are estimated by a Gibbs sampling technique.

This algorithm tries diferent values of the model parameters and record the most

probable ones. By default, 106 values for each parameter are collected. These values

are recorded every 103 sample. These settings can be modified using the appropriate

command-line options (see below).

8.1.3 Upper bounds of model parameters

The maximum expected number of substitutions per along a given branch is set

to 1.0. Since calibration times provide prior information about the time scale con-

sidered, it is possible to use that information to define an upper bound for the
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substitution rate. This upper bound is equal to the ratio of the maximum value

for a branch length (1.0) by the amount of time elapsed since the oldest calibration

point (i.e., the minimum of the lower bounds taken over the whole set of calibration

points)1. It is important to keep in mind that the upper bound of the average sub-

stitution rate depends on the time unit used in the calibration priors. The value of

the upper bound is printed on screen at the start of the execution.

PhyTime implements two models that authorize rates to be autocorrelated. The

strength of autocorrelation is governed by a parameter which value is estimated

from the data. However, it is necessary to set an appropriate upper bound for this

parameter prior running the analysis. The maximum value is set such that the

correlation between the rate at the beginning and at the end of a branch of length

1.0 calendar time unit is not different from 0. Here again the upper bound for the

model parameter depends on the time unit. It is important to choose this unit so

that a branch of length 1.0 calendar unit can be considered as short. For this reason,

we recommend to select a time unit so that the calibration times take values between

-10 and -1000.

8.1.4 PhyTime specific options

Beside the --calibration option, there are other command line options that are

specific to PhyTime:

• --chain len=num

num is the number of iterations required to estimate the joint posterior density

of all the model parameters, i.e., the length of the MCMC chain. Its default

is set to 1E+6.

• --sample freq=num

num is the number of generations between successive collection of the model

parameter values throughout the MCMC algorithm. For instance, the

--sample freq=1E+2 option will make PhyTime sample the model parame-

ter every 100th iteration of the MCMC algorithm. Its default is set to 1E+3.

• --fastlk=yes (no) [Default: no]

The option is used to turn on (off) the approximation of the likelihood function

using a multivariate normal density. By default, the exact likelihood is used.

Using the normal approximation considerably speeds up the calculation. How-

ever, it is necessary to ensure that this approximation is appropriate by looking

at the correlation between the exact and approximated likelihood values that

1The actual formula involves an extra parameter which does not need to be introduced here
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are sampled. Please read Section 9.2 for a description of the appropriate steps

to take.

• --no data

Use this option to sample from the priors only (rather from the posterior joint

density of the model parameters).

8.1.5 PhyTime output

The program PhyTime generates two output files. The file called

‘your seqfile phytime.XXXX.stats’, where XXXX is a randomly generated in-

teger, lists the node times and branch relative rates sampled during the estimation

process. It also gives the sampled values for other parameters, such as the autocor-

relation of rates (parameter ‘Nu’), and the rate of evolution (parameter ‘EvolRate’)

amongst others. This output file can be analysed with the program Tracer from

the BEAST package (http://beast.bio.ed.ac.uk/Main_Page). The second file

is called ‘your seqfile phytime.XXXX.trees’. It is the list of trees that were col-

lected during the estimation process, i.e., phylogenies sampled from the posterior

density of trees. This file can be processed using the software TreeAnnotator, also

part of the BEAST package (see http://beast.bio.ed.ac.uk/Main_Page) in order

to generate confidence sets for the node time estimates.

Important information is also displayed on the standard output of PhyTime (the

standard output generally corresponds to the terminal window from which PhyTime

was launched). The first column of this output gives the current generation, or run,

of the chain. It starts at 1 and goes up to 1E+6 by default (use --chain len

to change this value, see above). The second column gives the time elapsed in

seconds since the sampling began. The third column gives the log likelihood of the

phylogenetic model (i.e., ‘Felsenstein’s likelihood’). The fourth column gives the

logarithm of the joint prior probability of substitution rates along the tree and node

heights. The fifth column gives the current sampled value of the EvolRate parameter

along with the corresponding Effective Sample Size (ESS) (see Section 8.1.7) for this

parameter. The sixth column gives the tree height and the corresponding ESS. The

seventh column gives the value of the autocorrelation parameter followed by the

corresponding ESS. The eightth column gives the values of the birth rate parameter

that governs the birth-rate model of species divergence dates. The last column of

the standard output gives the minimum of the ESS values taken over the whole set

of node height estimates. It provides useful information when one has to decide

whether or not the sample size is large enough to draw valid conclusion, i.e., decide

whether the chain was run for long enough (see Section 9.2 for more detail about

adequate chain length).

29

http://beast.bio.ed.ac.uk/Main_Page
http://beast.bio.ed.ac.uk/Main_Page


8.1.6 ClockRate vs. EvolRate

The average rate of evolution along a branch is broken into two components. One

is called ClockRate and is the same throughout the tree. The other is called Evol-

Rate and corresponds to a weighted average of branch-specific rates. The model of

rate evolution implemented in PhyTime forces the branch-specific rate values to be

greater than one. As a consequence, ClockRate is usually smaller EvolRate.

In more mathematical terms, let µ be the value of ClockRate, ri be the value of

the relative rate along branch i and ∆i the time elapsed along branch i. The value

of EvolRate is then given by:

EvolRate = µ

∑

2n−3

i
ri∆i

∑

2n−3

i
∆i

.

It is clear from this equation that multiplying each ri by a constant and dividing µ

by the same constant does not change the value of EvolRate. The ris and µ are then

confounded, or non-identifiable, and only the value of EvolRate can be estimated

from the data. Please make sure that you use the value of EvolRate rather than

that of ClockRate when referring to the estimate of the substitution rate.

8.1.7 Effective sample size

The MCMC technique generates samples from a target distribution (in our case, the

joint posterior density of parameters). Due to the Markovian nature of the method,

these samples are not independent. The ESS is the estimated number of indepen-

dent measurements obtained from a set of (usually dependent) measurements. It is

calculated using the following formula:

ESS = N
(

1− r

1 + r

)

,

where N is the length of the chain (i.e., the ‘raw’ or ‘correlated’ sample size) and r

is the autocorrelation value, which is obtained using the following formula:

r =
1

(N − k)σ2
x

N−k
∑

i=1

(Xi − µx)(Xi+k − µx),

where µx and σx are the mean and standard deviation of the Xi values respectively

and k is the lag. The value of r that is used in PhyTime corresponds to the case

where k = 1, which therefore gives a first order approximation of the ‘average’ au-

tocorrelation value (i.e., the autocorrelation averaged over the set of possible values

of the lag).
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9 Recommendations on program usage

9.1 PhyML

The choice of the tree searching algorithm among those provided by PhyML is gen-

erally a tough one. The fastest option relies on local and simultaneous modifications

of the phylogeny using NNI moves. More thorough explorations of the space of

topologies are also available through the SPR options. As these two classes of tree

topology moves involve different computational burdens, it is important to deter-

mine which option is the most suitable for the type of data set or analysis one wants

to perform. Below is a list of recommendations for typical phylogenetic analyses.

1. Single data set, unlimited computing time. The best option here is probably to

use a SPR search (i.e., straight SPR of best of SPR and NNI). If the focus is on

estimating the relationships between species, it is a good idea to use more than

one starting tree to decrease the chance of getting stuck in a local maximum

of the likelihood function. Using NNIs is appropriate if the analysis does not

mainly focus on estimating the evolutionary relationships between species (e.g.

a tree is needed to estimate the parameters of codon-based models later on).

Branch supports can be estimated using bootstrap and approximate likelihood

ratios.

2. Single data set, restricted computing time. The three tree searching options

can be used depending on the computing time available and the size of the

data set. For small data sets (i.e., < 50 sequences), NNI will generally perform

well provided that the phylogenetic signal is strong. It is relevant to estimate

a first tree using NNI moves and examine the reconstructed phylogeny in order

to have a rough idea of the strength of the phylogenetic signal (the presence of

small internal branch lengths is generally considered as a sign of a weak phylo-

genetic signal, specially when sequences are short). For larger data sets (> 50

sequences), a SPR search is recommended if there are good evidence of a lack

of phylogenetic signal. Bootstrap analysis will generally involve large compu-

tational burdens. Estimating branch supports using approximate likelihood

ratios therefore provides an interesting alternative here.

3. Multiple data sets, unlimited computing time. Comparative genomic analyses

sometimes rely on building phylogenies from the analysis of a large number of

gene families. Here again, the NNI option is the most relevant if the focus is

not on recovering the most accurate picture of the evolutionary relationships

between species. Slower SPR-based heuristics should be used when the topol-

ogy of the tree is an important parameter of the analysis (e.g., identification of
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horizontally transferred genes using phylogenetic tree comparisons). Internal

branch support is generally not a crucial parameter of the multiple data set

analyses. Using approximate likelihood ratio is probably the best choice here.

4. Multiple data sets, limited computing time. The large amount of data to be pro-

cessed in a limited time generally requires the use of the fastest tree searching

and branch support estimation methods Hence, NNI and approximate likeli-

hood ratios rather than SPR and non-parametric bootstrap are generally the

most appropriate here.

Another important point is the choice of the substitution model. While default

options generally provide acceptable results, it is often warranted to perform a pre-

analysis in order to identify the best-fit substitution model. This pre-analysis can

be done using popular software such as Modeltest [25] or ProtTest [26] for instance.

These programs generally recommend the use of a discrete gamma distribution to

model the substitution process as variability of rates among sites is a common feature

of molecular evolution. The choice of the number of rate classes to use for this

distribution is also an important one. While the default is set to four categories in

PhyML, it is recommended to use larger number of classes if possible in order to

best approximate the patterns of rate variation across sites [27]. Note however that

run times are directly proportional to the number of classes of the discrete gamma

distribution. Here again, a pre-analysis with the simplest model should help the user

to determine the number of rate classes that represents the best trade-off between

computing time and fit of the model to the data.

9.2 PhyTime

Analysing a data set using PhyTime should involve three steps based on the following

questions: (1) do the priors seem to be adequate (2) can I use the fast approximation

of the likelihood and (3) how long shall I run the program for? I explain below how

to provide answers to these questions.

• Are the priors adequate? Bayesian analysis relies on specifiying the joint prior

density of model parameters. In the case of node age estimation, these pri-

ors essentially describe how rates of substitution vary across lineages and the

probabilistic distribution that node ages have when ignoring the information

provided by the genetic sequences. These priors vary from tree to tree. It

is therefore essential to check the adequacy of priors for each user-defined in-

put tree. In order to do so, PhyTime needs to be run with the --no data

option. When this option is required, the sequence data provided as input
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will be ignored and the rest of the analysis will proceed normally. The prior

distribution of model parameters, essentially edge rates and node heights, can

then be checked using the program Tracer as one would do for the standard

‘posterior’ analysis.

• Can I use the fast approximation to the likelihood? The suface of the log-

likelihood function can be approximated using a multivariate normal density.

This technique is saving very substantial amounts of computation time. How-

ever, like most approximations, there are situations where it does not provide

a good fit to the actual function. This usually happens when the phylogeny

displays a lot of short branches, i.e., the signal conveyed by the sequences is

weak. It is therefore important to first check whether using the approximate

likelihood is reasonable. In order to do so, it is recommended to first run

the program without the approximation, i.e., using the default settings. Once

the minimum value of the ESS of node ages (the last column on the right of

the standard output) has reached 40-50, open the phytime.XXXX output file

with Tracer and examine the correlation between the exact and approximate

likelihood values. Figure 5 gives an example where the correlation is too weak

and the approximation of the likelihood should be avoided. Figure 5 gives an

example where the approximation is good enough. The current execution of

PhyTime can be terminated and then re-launched using the --fast lk option.

• How long shall I run the program for? PhyTime should be run long enough

such that the ESS of each parameter is ‘large enough’. The last column on

the right handside of the standard output gives the minimum ESS across all

internal node heights. It is recommended to run the program so that this

number reaches at least 100.

10 Frequently asked questions

1. PhyML crashes before reading the sequences. What’s wrong ?

• The format of your sequence file is not recognized by PhyML. See Section

7

• The carriage return characters in your sequence files are not recognized

by PhyML. You must make sure that your sequence file is a plain text

file, with standard carriage return characters (i.e., corresponding to “\n”,

or “\r”)
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Figure 5. Exact vs. approximate likelihoods. The correlation between the

normally approximated (Y-axis) and the exact (X-axis) likelihoods is weak here.

The exact likelihood should be used (option fastlk=no).

Figure 6. Exact vs. approximate likelihoods. The correlation between the

normally approximated (Y-axis) and the exact (X-axis) likelihoods is good. The

approximation of the likelihood can be used (option fastlk=yes).
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2. The program crashes after reading the sequences. What’s wrong ?

• You analyse protein sequences and did not enter the -d aa option in the

command-line.

• The format of your sequence file is not recognized by PhyML. See Section

7

3. Does PhyML handle outgroup sequences ?

• Yes, it does. Outgroup taxa are identified by adding the ‘*’ sign at the

end of each corresponding sequence name (see Section 7.1.2)

4. Does PhyML estimate clock-constrained trees ?

• No, the PhyML program does not estimate clock-contrained trees. One

can however use the program PhyTime to perform such analysis but the

tree topology will not be estimated.

5. Can PhyML analyse partitioned data, such as multiple gene sequences ?

• We are currently working on this topic. Future releases of the program

will provide options to estimate trees from phylogenomic data sets, with

the opportunity to use different substitution models on the different data

partitions (e.g., different genes). PhyML will also include specific algo-

rithms to search the space of tree topologies for this type of data.
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